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ABSTRACT

Let S denote the space of bivariate piecewise polynomial functions of

degree ( k and smoothness p on the regular mesh generated by the three

directions (1,0), (0,1), (1,1). We construct a basis for S in terms of box

splines and truncated powers. This allows us to determine the polynomials

which are locally contained in S and to give upper and lower bounds for the

degree of approximation. For p = L(2k-2)/3j, k A 2(3), the case of minimal

degree k for given smoothness p, we identify the elements of minimal support

in S and give a basis for S = {f e s: supp f c a), with 0 a convex
loc

subset of R2 .
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SIGNIFICANCE AND EXPLANATION

Local support bases for piecewise polynomial spaces are important for

applications such as finite element methods, data fitting etc. In [BH1] a

general construction principle for such "B-splines" was used to obtain the so

called box-splines. They have a particularly regular discontinuity pattern

and coincide in special cases with standard finite elements.

.... -, This report investigates the use of translates of certain bivariate box-

splines in the construction of a unified theory for piecewise polynomial

functions on regular meshes.

A simple mesh is considered, derived from a square mesh by drawing in the

same diagonal into every square. The space S of piecewise polynomial

functions of a given degree and smoothness, and with discontinuities (in some

derivative) only across lines of that mesh is considered. We show that the

box splines and their translates provide a basis for the)Alocal" part of S

and use the techniques of.L88-1I to analyse the approximation properties of S.

The report stresses theimportance of local support bases which are

desireable for applications such as finite element methods, smoothing of data

and approximation in general. Our results should be useful for the further

investigation of smooth piecewise polynomials, in particular on regular meshes

(c.f. [CW], [Si], [S1] for related work).
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The reponsibility fc'r the wording and views expressed in this descriptive

~summary jies with MRC, and not with the authors of this report.
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Divariate box -rlines and smooth pp functions on a three-direction mesh

C. de Boor and K. H8llig

0. lntroductLa. This paper records further results of our continuing investigation of

certain multivariate B-splines. It follows [BH 1 ] in which we discussed general properties

of box splines and the spaces spanned by translates of a box spln.

In the present paper, we explore the question to what an extent box splines may be

useful in the study of spaces of smooth pp (:- piecewise polynomial) functions in which

they lie. We restrict attention to the simplest interesting situation, that of the space

S :

of bivariate pp functions in C , of degree ( k , on the mesh A obtained from a uniform

square mesh by drawing in the same diagonal in each square. Even in this simple setting, we

find much challenge; in fact, we must leave some obvious questions unanswered for the

present.

The specific questions we tried to answer are: (i) Are these B-splines "basic", i.e.,

to what an extent do box splines provide a basis for S 2 The answer is that they provide a

spanning set for the "local part", but have to be augmented by certain truncated powers to

give a spanning set for all of S . In certain special circumstances, they even provide a

basis for all finitely supported elements of S . But this happens rarely, because the

answer is "Usually not" to the question: (ii) Are these B-splines *minimal", i.e., does

S contain no element with support strictly inside that of a box spline? The box splines do

provide material help in answering the question: (iii) What is the approximation order

from S ?

In outline, the paper is as follows: In Section 1, we introduce the relevant notation

in the process of specializing the general results of (BH1] concerning box splines to the

specific context of the bivariate 3-direction mesh A . We study the space spanned by

certain translates of one such box spline, prove these translates to be linearly

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



independent even locally, and characterize all polynomials in their span. In Section 2, we

show that 8 is spanned by certain box splines and their translates together with certain

truncated powers. These latter functions are zero on a halfspace and agree with a suitable

polynomial on the complementary halfspace. This permits us to show, in Section 3, that, in

effect, the approximation order from 8 is entirely determined by how well one can

approximate from $loc :- span of box splines contained in 8 . This, in turn, can be

related to the question of which polynomials are contained in Slo c . We answer this

question in full and thereby obtain upper and lower bounds on the approximation order

from S which coincide in some cases and are, in any event, very close when p is as

large as possible, i.e.,

P - p(k) - Li2k-2)/3J

We also give a conjecture concerning the approximation order for p < p(k)

In Section 4, we look for elements of minimal support in S * These are provided by

the box splines in case k 1(3) and p = p(k) . For k B 0(3) and p - p(k) , there are

in S elements of smaller support than that of the box splines. These were first discussed

by Frederickson [Fr] . In either case, we show that these minimal support elements provide

a basis for all finitely supported functions in S . We also discuss the case k B 2(3)

and p - p(k) in which the degree is not minimal for the given p to illustrate that the

search for minimal support elements can be quite frustrating when k is not minimal. Only

for sufficiently large k (with respect to p ) does the minimal support question become

simple again.

2
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1. oX plinmm a three-dirCtIM m~eh. In [CH 1 ] , the box spIM M4- is defined as

the distribution on IF given by the rule

- 10,1]
n 1-

for some sequence i: ( )
n  Jn I. In this section, we specialize the general results

of [H I] concerning M= and the span

8.. s pan(x(*v))Veu

of its integer translates to the simple situation

m - 2 , H - (dI:r, d 2 sn d 3 zt) (2)

with the three directAoms given by

d: e1, d 2  * e2, d" : 1 + • 2

By this we mean that ran 3 C {d 1 , d 2 , d 3 } and that r, a, t are the relevant direction

Mltiplicities which characterize 3 , i.e.,

r :- {i: H i dI M . a : IMi: Ci d2 }I M and t : I{i i
= 

d3 )1

This special choice of 2 allows us to delve more deeply into the details in a setting 
of

possibly practical importance.

In later sections, we will write

Sr~sf t  instead of N..

For the remainder of this section, though, we write

14 instead of N.

and write

xv  S- N(.-v)

for any particular

v e V :- U
2

We now study

S :- s2.- span (xv)v

S is a subspace of

Wk,A 
p functions of degree 4 k on the partition A

with

k : n-2

3



and A the partition of R2 into triangles obtained from the three families of meshlines

v + zdi , v e V , z e R

We have foregone the opportunity to make the symmetries in A more apparent by having the

0
three families of meshlines intersect each other at an angle of 120 (as is done, e.g., in

(Fr]). This would needlessly complicate the notation. It is sufficient to note that any

permutation of the meshline families can be accomplished by some linear map on R2 • and

the corresponding change of variables leaves w k, 0 C invariant.

The smoothness of N depends on the direction multiplicities. We have

(d) (d-1)

with

d - (n - max (r,s,t))- 1

the number defined in EBHi (2.6)] as evaluated for our special case. Since n = r + a + t

it follows that, for fixed degree k - n-2 , we get maximal smoothness by choosing

max (r,s,t} " r(k+2)/31

Then, for k - 3U + i , the corresponding maximal d is

d(k) s- 2Pa + i - (2k+1)/3 (3)

i=-I,O,1 . For k = 3M+1 , there is just one choice,

r = a = t = Uj+1

while, for k = 3p or k = 3U-1 , there are three choices for (r,s,t)

Recall from [BH,; cor.2 of Thm.5] that d also governs which polynomial spaces are

contained in S . Precisely,

i C s iff m d. (4)

Of course, as we will see shortly, some polynomials of degree higher than m may also be

in S

It follows from (1) that

supp M = X n i A E (0,1] n  
= (E3 X(i)d x e [0,r]x[0,s]x[0,t]

Thus, supp M is a hexagon composed of

N := rs + rt + st

triangles of A which are translates of the triangle spanned by d, and d3 and a like

4
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number of triangles which are translates of the triangle spanned by d2 and d3 . This

implies that exactly N Mv's have any particular triangle of A in their support.

Since

det(di, dj) 1 1 for i J

* we conclude from [BHIProp.4] that (Mv)V need not be linearly dependent. We now prove

much more.

Proposition 1. (M,)re v  is locally linearly independent, i.e..

(Mv : supp Kv(A 0) (5)

is linearly independent over any open set A contained in some triangle of A

Proof. Since (5) contains exactly N elements, it is necessary and sufficient to

prove that S contains N functions which are linearly independent over A . This latter

condition is shown to hold once we show that dim (Sr~w) ) N • It then follows,

incidentally, that dim (S fw) -N * Here,

S IW zW.

is the linear space of all polynomials contained in S

The proof consists in identifying various elements of w_ * For the specific _ , we

have from (BSHITheorem 53 that

T- = ker DrDs fker D (D +D 2 )t tker D2 (DI+D 2 )t .(6)

Correspondingly, we would like to specify linearly independent elements of w in the form

rp~r, O~s, -

IP I21I3T (1) for p<r, os, Tit

p-r, O<s, TUt

with 1I , 12 , 13 right inverses of D1, D2 R DI+D 2 respectively, and I denoting the

function xj-- I . But, since each of these integral operators fails to commute with at

least one of these differential operators, it is tricky to make the construction precise in

this form.

Instead, we single out the two classes

- -. -. . .. . . ..



& - { a(l) < r) and A . a ta(2) < s)

of nonomial*

Then A, C ker D1r , A2 . ker D28 , therefore AI AfA2 provides a linearly independent set

of re elements in w.. in addition, we pick a set B1, slpan(AA 2) of rt elements

and a net 2C span(1 2 ,A1 ) of at elements in w- and are then certain of the linear

independence of the total collection

(Anl A2 ) VB 1 UB2

as soon as we prove that both B1 and 82 are themselves linearly independent.

To construct B1 , we consider the right inverse J of D1+D 2  for which

( ,o - 0

To find J#a  w e write .7* - E c and consider the resulting linear system

E c 0 0061+ -2 aSc0 l(_el+*_e2) 0

E cats(.,0) - 0

This gives c0 - 0 for 0(2) - 0 and therefore c 0 - 0 for 101 * lai + 1 and for

101 - lae + 1 with 0(1) aI) , hence also c,,., 2  I . In conclusion,

Oa e #ae 2

with

S:- +0 + span {4 I 1 - 101 O < 0(1))

Therefore, more generally,

1[ f O+e2 o (7)

Sow set

: ; n1  :-B ( l(, i J-,..t -0, ....,r-1}

. By (7),

(js+i) _ spn (fiA) for i>0, J<r

hence B1 C span (A A2 ) , as desired. This also implies that 81 C ker Dir , hence

B1  ker DJrD2 8 Aker Dr(DI+D2 )t

" But

(D+D 2 i(i -)) ker D2

2)~ i(,s1) - (j's-1) Chr

6
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therefore (D,+D 2 )t!B1  ker D2 s hence also BIOS ker D2l(DI+D 2 )t • We conclude that

3 I

Finally, we need to show the linear independence of B1  For this, consider the

matrix C of polynomial coefficients for the elements of B1 , i.e.,

i
Sj,s-t .s £ C(i,J,0) *P , i-1 .... t; J-0,...,r-1

Choose the (reverse lexicographic) ordering
" f +:j < h+k

(iJ) < (h,k) : or

ti+J -h+k and i<h

Then C is unit lower triangular in the sense that

JiJas-1 J,8-1+i + span(# 0 (J,s-1+i)} , all J,i,

hence of full rank. Thus 81 is linearly independent.

The construction of D2 proceeds in exactly the same way, with the roles of the two

4 independent variables interchanged. III

For exzql, take (r,s,t) - (2,2,1) . Then n - r + a + t - 5 , hence k - 3 . Also,

d - d(3) - 2 , hence M is a piecewise cubic C1 function. om

AI(A2 t Oa : 4(1), e(2) - 0.1

forms a basis for w l s- bilinear polynomials. Further,

B, - 1 J -l 1-0,1 ,1

with

J*0,1- 40,2 and J+ - #1,2 + C40,3

We determine c from the condition that (D1+D2 )J#, " . This gives

#0,2 + *1,1 + c*0,2 - 41,1 1

hence c - -1 • Thus - (0.2 ' #1,2 - #0,3) * By syietry,

2 - (42,0 #2,1 " *3,0 " Therefore, altogether,
W - + san(# 4,

2 1 ,2 0,3 ' 2,1 3,0

in case . - (el, el, a2 , e2  e1 e2)

7



Corollary 1. For any triangle T of A , a basis for W- is provided by the N

nontrivial polynomials which agree with Nv on T

Corollar 2. If p e w agrees with N on some triangle of A, then p e .

Rhmark. While Corollary 1 is quite special, Corollary 2 is valid for an arbitrary box

spline N in any number of dimensions. This is a consequence of [BH 1 Theorem 5] and is

due to the fact that any polynomial p which agrees with 1 on some open set is

necessarily mapped to 0 by any differential operator Dz for which DZN is supported

only on certain hyperplanes.

4
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2. Saning mete and local bases. In this section, we give a truncated power basis

for P,(Q) , with Q any rectangle bounded by &-mesh lines. This would allow us to

verify the dimension formulas of [CW 1] for this space. We also give a spanning set for

V P itself which, though finitely linearly independent, permits nontrivial infinite
kA

linear combinations which add to zero. Its main feature is that it consists of finitely

supported functions, viz. box splines, on the one hand and of functions supported on half

spaces and agreeing with some polynomial there on the other. These latter functions do not

contribute to the approximation order obtainable from the scale ( , as we will show

in the next section. This means that the approximation order is no better than that

obtainable from the span of the relevant box splines, and this fact allows us to give upper

and lower bounds on the approximation order which differ by at most two in case p is as

large as possible.

4 Recall from [BH1 ] th.c Dahmen's truncated powers [D) can be thought of as shadows of

the standard cone n With : = ( i) 1  in In , the corresponding truncated power or

cone spline C. is, by definition, the distribution on 1P given by the rule

C. • I-> fn *( n jci) 1) dX
R+n

Since .,:# I-> f ,n(.-(i),i) d • it follows that
C: [0,2 (n

- veK2 - V

Recall from [BHI ] that, for Z in -

D C.. C. (2)

Now specialize to the setup of Section 1, i.e., to the specific sequence

= (d 1 :r, d2 :s, d3 :t)

consisting only of the vectors d1 I el, d2 = e2 , and d3 = el+e 2  in R2 , and therefore

characterized by the corresponding direction multiplicities (r,s,t) . It follows from (2)

that

C-. has all derivatives of order r{r+t-2} continuous across span({dLJ) . (3)

9



b- ,

Correspondingly, the univariate function N. given by the rule

N.(z) t- C-(zl-s) , all z e R
a a

is a univariate B-spline, i.e.,

C._(z,1-z) = c.Jt(zlOsr, 1/2 :t, 1:s) (4)

for some positive c..

Here is an outline of what is to follow. We show that, near a lower left corner of its

support, any f e can be written as a linear combination of certain truncated powers.

For this, we split f into its homogeneous components. Being homogeneous, each such

component is determined by its restriction to a line which "cuts across" the corner. Such a

restriction is a univariate spline, hence uniquely representable as a linear combination of

certain univariate B-splines, i.e., of restrictions of certain truncated powers.

Next, on subtracting from f this linear combination of truncated powers, we obtain a

new element of w whose support is inside that of f and offers lower left corners, tok,h

the right and/or above, for further "peeling off".

We begin with a study of the simple pp space which models the behavior of f e P

near a lower left corner of its support. We denote this space by

S(k,v) := w-:. k, V.

and mean by this the space of all pp functions of degree 4 k with support in R+ 2 and

possible singularities only across the three rays

Rldi , i=1,2,3

In addition, we think of v here as a 3-vector, with v(i) indicating that all

derivatives of order 4 v(i) are required to be continuous across R+di i-1,2,3.

Let

1L 2H : f : f(zx) - z f(x) , all x e R , z e it+

denote the collection of all functions on 12 (positively) homogeneous of degree I As is

well known,

k=

so it makes sense to talk about the homogeneous component of degree I of a polynomial. We

10
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fnow make the same claim for S(<k,v) o with
i S(L,V) := IASM~,V)

we claim

Linma 2. S(kv) - S S(i,v)

-l k

Proof. Only the inclusion *" requires proof. To prove this inclusion, it is

sufficient to show that the pp function made up of the Ith degree homogeneous components of

an element of S(Mk,v) is again in S(lk,v) . This follows from the following

Claim. If a polynomial p vanishes to order p along the ray RBd , i.e..

Dp-0 on Rnd for at 4 p,

then each of its homogeneous components also vanishes to order p oM n d

Proof. Assume without loss that d - 2 • Since D, p - 0 on R+e2  for I p * we

must have

p (0110)q

for some polynomial q . Writing

p Ez Zp, with p, e H, , all I

we onlue ha echp k (011l0)
we conclude that each pt has the factor C)0 , therefore vanishes on IT2 together

with every derivative of order < p+1 . (In particular, p, - 0 for I < p+1 ). III

We took the trouble to express S((kv) in terms of its homogeneous components

S(X,v) since, on S(lv) , the linear map R given by the rule

(Rf)(z) :- f(z,l-z) , all z e R

is 1-1. This follows from the fact that, for any f e HP

f(Az,A(1-z)) - A (Rf)(z) , all A e a+ , z e a

hence such f is determined on the entire halfspace x(l) + x(2) ) 0 once Rf is known.

We claim that R carries S(Z,v) onto the univariate spline space

S u(tv)

11



...

I

which consists of all pp functions g of degree 4 L on R with breakpoints 0, 1/2, 1,

with support in [0,1] , and with1
g e c near 1/2 if i -

Indeed, R carries all of S(CL,v) into Su (4,v) • In addition, we recall from (4) that,

with

(-(dIsr, s, d 3 :t)

R carries the cone spline C. to a positive multiple of the univariate B-spline

M(*Oar, 1/2:t, 1is)

This implies that, with s- (dPVI ,"tV() d,1L-()

the cone splines C are in 9(1,v) , and R carries these to a basis for

S (41,v) Consequently, these cone splines must form a basis for S(L,v) In particular,

u

Therefore

dim S(4k,v) - (z +-V( )) - Z-1 )+ (S)

mrk. This formula shows that vp  contains no finitely supported functions unless
k,A

p is suitably small: If f e wp,\ 0 has finite support, then its support must contain

a "lower left corner", i.e., a mesh square Qv :- (v(1),v(1)+lx(v(2),v(2)+1] along whose

left and lower edge f vanishes to order p . This implies that f agrees on Qv with

g(e-v) for some g e S(<k,p,p,p) . This in turn implies that dim S(4Ck,p,p,P) > 0 , and,

by (5), this is equivalent to having p 4 (2k-2)/3 . This conclusion was reached in (BD],

using the same simple argument of cutting across such a lower left corner of the support,

as is used here. We realized only recently that this conclusion can already be found in

(Fa].

We are now ready to give a cone spline basis for

P IQ) AcP(Q)
k = k,A IQ

We use the translation map T given by the rule
v

(Tvf)(x) :- f(x- v)

12
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K

V

:1

Proposition 2. Let Q = EO,i+l]x[O,N+l] . Then P,(Q) is the direct sum of the

spaces TS(,k,v ) with

, v - (oo,)

(-1,p,p) , v (x,O)
vv (pl1,) , ( all v e VQ - V A(1(1OM x[O,N]) * and x,y > 0

(p,pI,p) , v - 0=
S(PPO:) 8 V - x,y)/

Consequently,

dim w =, (Q) t+ + (D-p)+ + 2(M+)(-p)+ + MN(3(l-p)+ - L-)+ (6)

and the restriction to Q of the cone splines

C '(-v) , all i , with (C.) : (d:t--v (1),d :-v (3),d 1-v (2))
I v (7

for 4 k, v e V ,

forms a basis for v0,(Q)

Proof. For any choice of V , the spaces T S((k,v ) are in direct sun. For thev v vlIQ
specific choices of V given, they are all in 1rA(Q) . Thus it only remains to show

that xr A(Q) is contained in their sum.

We proceed by induction. For this, we use again the (reverse lexicographic) ordering

IvI < Iwi
v < w or

lvi - Iwi and v(1) < w(l)

which provides a total ordering for VQ • We again use Qv to denote the unit mesh square

whose lower left corner is v . The induction hypothesis to be advanced is the following:

For all v < w , there exists fv Tv S(4k,v)IQ so that

6w :- f -Zv<w fv

vanishes on U Qv . In order to advance this hypothesis, we now show that, in its
v<w

consequence, 6w agrees on w with some fw e TwS(4k,vw ) . There are four cases:

Mi) w - 0 . Then 6 - f , hence it agrees with some fw e S(4k,-1,-1,p)
w

(ii) w - (i,0) for some i > 0 * Then 6 vanishes to order p on the segent
w

13



ix(O,1] , therefore agrees on Q with some fe e T8(fk,-1,PP)

(iii) w - (O,J) for some j > 0 . Then 8 vanishes to order p on the segment

[0,1]xj , therefore agrees on w with some f T S wa(Q,p,-1,P) I

(iv) w - (ij) for ij > 0 . Then 6 vanishes to order p on the left as well as
V

on the lower boundary segment of 9 , therefore agrees on w with some fw e

r S(k,pp,p)
V v2

Since supp fw R C c U v , this advances the induction hypothesis, since it
v<w

implies that 6 - f vanishes also on Q as well as on V v"
w v v(w

The dimension formula (6) now follows from (5) . III

Since K and N are arbitrary positive integers, we obtain the following

Corollary. For Q - A..2 , SP , (Q) is spanned by the restriction to Q of the cone

splines listed in (7) (with VQ - a+2).

Next, we investigate the relationship of %A(Q) to <,A IQ * The" two spaces are,

in fact, the same, but this is not clear a priori. it is obvious that

W" sP  C ACP(Q) -: P(Q)
k ,AIQ ' - kAIQ%

For the converse containment, it is necessary and sufficient to show that every f e

1P(Q) can be extended to an element of * By Proposition 2, this is established
%'A %'At

once we show that, for each v e VQ , v S(4kv)IQ can be extended to a subset of

and this is obvious as long as v - (pp,o) . This leaves three casesv

(i) v = (-Ip,p) . Then, for i1i,....p10

C : C
ii

involves the direction d, 1+2-i times, i.e., more than A-p times, hence fails to be in

C P  across Rd 1 . Recall from (4) that the restriction R i of Ci given by

(RCi)(t] I Ci~t,1-t) , all t e Ia

is a scaled univariate 3-spline involving just the three knots 0, 1/2, and 1, and the

14



I

latter two no more than X-p times. We can therefore write RCi on (0,11 as a linear

combination of the truncated powers

(1/2 - •) r 01-") r=+..,•

Since Ci is homogeneous of degree I , this implies that, on R+2, Ci itself is a

linear combination of the truncated poves

Ti, , ,  (d i ')r~dx+r , (8)

i - 2,3, and r = p+l,...,t , with

d2 = , d3  1 e1 -e 2

and these truncated powers are all in w
p  

We conclude that
k,A

on R+2 , S((k,vv ) S(4k,P~p,p) + span(Ti 1 ,r: i:2,31 p<r1(Mk) . (9)

(ii) v = (p,-1,p) . In this case, we conclude that we can write the offending conev

splines as linear combinations of the truncated powers

x - (dX)L-rd ,x)+r and x x (%)-r(-d. x)+r,

p < r 4 1 k , with

This implies that,

on +2 , S((kv 3 S(4k,p,pp) + spaniT-ir1 1=1,3; p<r((k) + k , (10)

the last sumand because the function x F> (d 3 x)- (-dx)+r is in spanT 3 ,,r) +

(ii) vv (-1,-1,p) . For this case,

S(Av) - U. fiv on + 2

for £ 4 p . For I > p , Ci has either d1 or d 2 but never both appearing more than

1-P times. This implies that

S(4k,vv ) 4 vk + S(4k,pp,p) + S(Ck,-1,p,p) + S(Ck,p,-1,p)

Thus, using the other cases, we find that,

on R+
2 

, S(4k,v) _ S(Ck,p,p,p) + span{Titr 1 1-1,2,31 p<rCtDk) + x (11)

This establishes most of

15



orlms 2. Lst Q - (ON1+x(O,4+l . Then

k,'A IQ *(2

Further, on Q

A wp k + T + S (13)'-"kA " k

with

an T s- span( T i,r £ ( - i ) •-1,2,31 p<r <-k } (14)

and

S z- span{ HZ(. - ) Z = 14k i-l...,3(A-p)--, L~3 }. (15)

and
i ((;:1 :"(d ,i-, 3,1-0, d 21 -)•

Proof. We only need to prove (13). But this follows from (12), from Proposition 2, and

from (9)-(11), using (1) to convert the cone splines into linear combinations of

corresponding box splines. III

It is easy (but perhaps not all that useful) to obtain from Theorem 2 a spanning set

of the same fora for all of P Let all a2, U3  be the three domains into which it2

is subdivided by the three rays ;~dl, Ld 2 , and Rtd 3 , with 0 1 - R+ . For given f e

WkA we may choose by Theorem 2 an f e W + T + 8 which agrees with f on 1 The

function f - fl is in wp  and vanishes on 2 , hence vanishes to order p on a3 . In

effect, the component flT of f, from vk + T insures that f " flT vanishes to

order p on 30 * This makes it possible to write f - f on a as an element f1 9

of the span of the box splines listed in (15). An analogous argument therefore establishes

the existence of an element f2,T in

span( x r-, (di(x-Zd 4 -r(-d:x),r : 1-1,2, Pcr(A;k
"k + span( T i~lr( - d d) 1-1,21 p<r1C1k W k + T

so that g := f " fT - f2,T vanishes to order P on Id 3 . Since f2,T vanishes on

01 i it follows that g vanishes to order p on 30 and 3 while g f f on

2 3%whl g - 1 ,To

16
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hence g -fl there. This makes it possible to write g on Q, as a linear

combination fi,, of box splines whose support is entirely in 2, and which are obtained

from the box splines listed in (15) by the linear change of variables which carries a

to a . Because we chose the direction d3 to appear exactly L-p times in the box

splines of degree 9 in (15), the box splines on 0 so obtained are, in general, not

translates of the ones in (15), but could be written am infinite linear combinations of

such translates.

It follows that f - flT + f2 ,T + fIS + f2,S + f3,s * In this fashion, we can

represent Tk as the span of wk , the truncated powers listed in (14), and certain box

splinos.

17
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3. If, blmtim r. In this section, we give upper and lower bound for the

approximation order of the smooth pp space

". k,A

with A the three-direction mesh introduced in Section 1. The aprcimmtiom order of S

is, by definition, the integer a for which the following holds: For all sufficiently

smooth functions f

dist(f. h) - O(he)

while, for some C -function f

dit(f• SO)  0 o(he ) .

Here, the scale (S h ) of approximating spaces is generated from S by simple scaling,

8 h ch (8)

with

(hf)() s- f(x/h) • all f, x, h

Further,

dist(f, U) t- inf.. If- ul

and I*I is the sup norm on some closed domain AC R2

If $ - If ire. :- supxealf(x)i

In this definition, the approximation order depends on 0 , and rightly so. if, e.g.,

all the elements of *S had their support in a+2 , then Sh  would be entirely unable to

approximate to functions having some support in .2 , hence might well have different

approximation order depending on whether or not A lies entirely in +2 . For the

specific spaces wp  or S. (f interest here, though, the approximation order is the

same for any closed and bounded A with some interior, since, for sufficiently small h

, 3h is invariant under a suitable linear change of variables carrying one such a into

another.

Here is a simple necessary condition for the approximation order to be a

1m 3. Let U be a locally compact linear space of functions on P, let Q be a

closed subset of 1n  having 0 in its interior, and assume that

18
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dist(f, Uh ) - O(hm )

for all sufficiently smooth f * Then

Proof. Assume without loss that p is a polynomial homogeneous of degree L < a By

assumption, there exist const and uh e Uh  so that

Ip - uhl.,a C const h a  for all h.

Therefore

Up-wh1.,°h (; oonst h r ' 4 const h

with

wh s- uh(h-)/h U

using the fact that

I
p(h,)/h - p

This shows that wh converges to p uniformly on compact sets, hence p e U . III

This simple necessary condition is far from sufficient, obviously. For example,

taking U - v o W vs obtain Uh- U all h and this scale has approximation order 0

Zt is not clear at present what other conditions one should add to get necessary and

sufficient conditions for the approximation order to be at least a . Yet, Lema 3 in

conjunction with Theorem 2 leads to a close-to-exact estimate of the approximation order

of S - W0  in case p is maximal for the given k.
k, A

A lover bound for the approximation order of 8 can already be found in (BD; Theorem

4] where it is shown that, for all sufficiently smooth f

dist(f, S) - O(h p+ 2 ) in case p - p(k) %= U2k-2)/3J . (1)

We saw already in Section 1 that this is as large a p (- d-1) as we can choose and still

have box splines in S . Correspondingly, it is shown in [BDI that, for p > p(k) , S has

approximation order 0

Obviously, (1) provides also the lower bound p(k)+2 for the approximation order of

8 in case p < p(k) B Dut one would expect the approximation order of S to increase as

19

L

L

-J.- . . - - - . . .



p decreases. This increase cannot be seen merely by studying the approximation order of

8- S (the way (1) is obtained). For, (BH1 ;Sec.61 shows that the approximation order of

=) is d+1 ,with

d -k + I ax(r,s,t)

in case

d - (d:r, d 2 t, d 3:t) and r+s+t - k+2

while, as discussed in Section 1, 8. C( d - 1 ) and no better. This means that a decrease

in p increases the number of different box splines M.. in S , but the approximation

order of the additional subspaces S. is less than the approximation order of thosea

already in S when p in maximal, i.e., when p - p(k)

It is the main goal of this section to provide an upper bound for the approximation

order of S which, in the case p - p(k) , is close to the lower bound (1). The proof idea

is simple: We show that the polynomials and truncated powers in S do not contribute to

its approximation order. This means that the approximation order is already determined by

the span

Sloc

of the box splines in S , and the discussion in Section 1 of the spaces S. spanned by

the translates of one such box spline . allows us to determine the maximal m for which

w M. is contained in Sloc

In view of (2.15), we set

' oc :- Z- E (2a)

with

, + and (C,) :- (d,:L-p, d3 :t-p, d2: t-( * (2b)

Proposition 3.1. If dist(f, Sh ) = O(he ) for all sufficiently smooth functions f

then m-1 € Sloc

Proof. Let p be a sufficiently smooth function. By assumption, there exist const

and h e Sh  all h ,so that

20
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a h 1C const hm

By Theorem 2, we can write

with

, Oh( o) and s" e Oh Wk + T)

and T the span of certain truncated peoers,

T - span{ Tj 1  C( - Ui) i-1,2,3; p<r'tk }

where

T") dtr(d *)+r
Titr 

W :- Cdix) 
d xTherefore, for any positive n , the linear map

11$- n A d A n k 3. 6 ,-C:.

with

A yf : f(.+y) - f

carries all of OhT to zero (since k-p 4 k+1), as well as all of k  We conclude that

-
6iS' .,,. C 23 (k+l const hm ,

with 0' :- {x e 11 : dist(x, 82) 3(k-p)T )

For h e r/u , we have 6 s' e ch(Sloc) i In view of Lema 3, it therefore suffices to

show that

I - ran .

But this is obvious since, for any y 0 0 and any r , Ay maps wx onto ir_1

yp

Theorem 3. or p C p(k) :- U2k-2)/3j , the approximation order m of S - iA

satisfies a e [p(k)+2, n~k)] , with

ih(k) :- uin(2(k-p), k+1)

Proof. The lower bound for a is provided by (1). By Proposition 3.1, the upper bound

is established once we show that

W nlk) 4 :  sloc "

21
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Obviously, Tk+1 L Bl o Further, by (2), each box spline in Bloc  involves each of the

two directions dl• d2 at most k-p times. This shows that (DID 2 
k - p carries f e

Bloc to a distribution supported only on the meshlines of A . Consequently, Sloc cannot

contain the particular polynomial (which s carried by (DID 2 )k
-  to

nontrivial constant function x --> (k-p)12 .111

The next proposition shows that the upper bound in Theorem 3 is sharp in the sense of

Proposition 3.1.

Provoetion 3.2. Fo.r loc as given by (2).

max{m ZM_ 1 C So = r(k) 3= mtn(2(k-p), k+1} . (3)

Proof. The assertion is obvious for k = 0,1,2. Since we already know that

'an~k) € Slo ,  we only have to show that

Consider the box splines listed in (2). Specifically, choose i so that 3, 3i: k

involves direction d1 as little as possible yet at least once. Let (rst) be its

direction multiplicities. Then r A 1 Further, s+t - 2(k-p) as long as k+2 > 2(k-p)

In the contrary case, r - I and at = k+1 . Hence, in either case,

r - k-p + 1 - 1 and s+t -m(k) . (4)

We conclude with (1.6) that

Oae s. for lal < r(k) and u(1) < r

Indeed, each such polynomial is in ker D1r , and, as a polynomial of degree < ni(k) = st

trivially in ker D2 (DI+D 2 )t

Assume that we already know that

)e sloc  for Jul < m(k) and a(1) < r+j (5)

(as we do now for j - 0). If k-p > r+j , then, with (4), k-p > k-p + I - i + j , or,, i-j > 1 , hence we may consider Bij- " Let (rIJ+1, a', t') be its direction

multiplicities. Then

s'It' m a(k) - - •

22
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By the proof of Proposition 1, S- contains an element of

() /B + span( ()y I IY1 = IBl, y(1) < 0(1)) (6)

provided 4(1) < r+j+1 and 0(2) < s'+t' - m(k) - j - 1 . This implies that S.
=i-i-i

contains an element of (6) for 0(1) - r+j and 101 < m(k) , and, on combining this with

(5), we conclude that (5) holds also with j replaced by j+1

This allows us to conclude that (5) holds for r+j - k-p . But then, by symmetry, also
a

() e Sloc for lal < m(k) and a(1) > k-p

and this finishes the proof. IlI

For p - p(k) , the bounds in Theorem 3 are particularly tight. If i - -1, 0, 1

and k - 3P + i , then p(k) - 2p-1 + i • Therefore, for k - 3M + 1 , the approximation
orde of p(k)

order of x equals p(k)+2 - 2p+2 * For k - 31& , it lies between p(k)+2 and

p(k)+3 - The particular case k = 3 is discussed in detail in [BH2) where it is shown

that the approximation order of 3A is only 3 (- P(3)+2) rather than 4 (- m(3)).

This is surprising and disappointing, since it shows that the simple mechanism on which

Proposition 3.1 is based is not sufficient to predict the approximation order. One might be

tempted to conclude from this example and from the case k - 3P+1 that the highest

approximation order obtainable from an S- in S determines the approximation order of

S itself, at least when p = P(k) . The simple example k - 2 contradicts this. In this

case, P(k) - 0 , i.e., P(k)+2 - 2 , yet local polynomial interpolation is well known to

provide approximation order 3 from continuous piecewise parabolic functions on any

triangulation A

For p < p(k) , the lower bound stays constant while the upper bound increases until

it reaches k+1 , exactly at the point where p is small enough so that, already for a

two-direction mesh E , vp contains finitely supported functions (see [BD]). We

conjecture that the approximation order of p  never differs from its upper bound

m(k) by more than I . Proof of this conjecture would require construction of a local

approximation scheme which makes use of much of Sloc rather than just one S.

23
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4. nhJimulity of opmt. In this section, we show that box splines in

may or may not have minimal support, even in the very restricted setting of maximal

smoothness, i.e., when

p - P(k)

as we assume throughout this section. Precisely, we show that, for k S 1(3) , the sole box

spline in S has minimal support, while, for k = 0(3) , the box splines in S do not. In

the latter case, we show that a certain element first constructed in (Fr) has minimal

support as does its 'flip'. In either case, the minimality allows us to conclude that

translates of the minimal support elements span the subspace of all finitely supported

elements of S . For the special cases k - 3 or 4 , this has also been proved in [CW2 1.

The final case, k = 2(3) , gives a hint of the complications awaiting those wishing to

study the minimal support question for arbitrary p . We merely discuss the specific

choices k - 2, 5, 8, and state some conjectures concerning the general case.

We make use of the notation

for the box spline ML with = - (dl:r, d2 s, d st)

We say that f has minimal support in 8 if fe 8S an#'. tb"' inly g 0 Z having

support strictly inside supp f is g - 0 . We say that f has mique minima support

In I if f e S and any g e S having support in supp f is a multiple of f . Clearly,

any f having unique minimal support in S has minxmal support in S .

Theorem 4.1. Let k - 3--2 and p - p(k) (- 2V-2) , and set S1 t- Then the

box spline N :- NP,,, has unique minimal support in S1

The proof depends on the following lemma, for which we recall the abbreviation

Q - (v( 1),v(1)91x(v(2),v(2)+1]
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used in Section 2 for the particular mesh square whose lower left corner is the vertex v-:i 1
Loms 4.1. Let C - conv(0, ja# jdI+d 3 , d2 ) , i.e., a Q ( )

with 8 the triangle conv(jdl, jdl+d3 , (+1)d 1 } . Let X s

(flu " f e S1 . supp f C (x2) > 1) U Then dim X - (J+1-)+

Proof. Since k " 3--2 and k - P = , we conclude from (2.5) that S(c(kP,p,p) is

spanned by the single cone spline C :- C. with S a- (d 1 :1, d2 sli, d 3 z) . Thus, from the

argument for Proposition 2,

x - (f e pan(.-(vO))l fl8  o ) 0

The cone spline C is homogeneous of degree k - 3ja-2 and vanishes to exact order

p - 2p-2 along 11+dI . Therefore

C(x - (V,0)) " c (x - (Vo)) (p - 1 ,2V-1) + o(x(2) 2 "- 1 ) for x e S

for some nonzero c . The condition f " 0 therefore implies the condition

a ((1)- v)- 0 for xee (1)

in case f - LE aVC(--(V,0)) . Since the (univariate) polynomials (-v)w - , VMO,...,Wl,

are linearly independent over any open set, (1) constitutes mn {J+l as) independent

conditions on the coefficient vector (a) and therefore

dim X • (J+I - o)+ 

The reverse inequality follows from the fact that, by Proposition 1, the box splines

M(- - (v,O)) * v-O,...,J-p , are independent over 0 and their restriction to Q lies

in I 11

Corollzry. If f 6 S1 has its suport in R+2  and its support in [OK)2  lies

between the rays (W-1)d1 + R+d3 and Ud2 + Rt+d3 , then f vanishes on all of [0,Ri2

Proof. The given domain lies in the union of the sequence

no # a "0' , iraI4-1 (2)

of sets

Q 2- (v,v) + conv(O, (P-l)d 1, (a-1)dl+d 3 , d2 }

a - (v,v+l) + conv{O, (-1)d 2 , (-1)d 2 +d3 , d1 }

25
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I

(as illustrated in Figure 4.1 for M - 2 and N - 4) to which we can apply lmma 4.1 with

j - P-1 in sequence, in order to conclude, step by step, that f must also vanish on each

set in the sequence. III

! A/
Figure 4.1

Proof of heors 4.1. Assume that supp g supp N for some g e s, Lama 4.1,

with j - M , implies that g = cm on o : onv((P-1,0), (P,O), (2i, ), (215,11)) for

some scalar c . Thus f := g - cN has support in the hexagon supp N 0 . This hexagon

lies in a domain of the type described in the corollary to Lema 4.1, thus allowing the

conclusion that g = N . iII

The unique minimality of the support of N and its translates implies that they form

a basis for the locally supported functions in 81

Proposition 4.1. For given convex 0 , (M( -v) : v e S2 , upp NC .-v) C 11) is a

basis for

Si (i] :- (f e s supp f C ) •

The proof of this corollary is analogous to the slightly more complicated proof of

Proposition 4.2 below and is therefore omitted.
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We now consider the slightly more complicated case k - 3-3 with p - p(k) - 2-3

get
kA " ,2 W-3

0 A ''3 w-3. a

The box splines in So do not have minimal support. But an element N of unique minimal

support in So  is given by the rule

{, if x e conv(0,d,d3}

0u otherwise (3)

NV+ 1  NV MU1 1| for v e m

/ /I

i _/

Figure 4.2

Here, * indicates convolution. The function N seems to have been considered first by

Frederickson [Fr] and later, independently, by Sabin (Bi] * and thence in 1811 and [Va].

While the support of NP has some symetry, it is asymetric with respect to A . Figure

4.2 shows the support of N2 . In general, the support of N is circumambulated by

walking alternatively pa and a-1 steps in the directions d, d3 , d2 , -dl, -d3 , -d2,

starting at the origin. Because of the asymmetry, the element N' given by the rule

N'(x) - N (x(2),x(1)) (4)

is essentially different from N,, . Together, they provide a local basis since they are

closely related to the box splines in S0 : Convolving the obvious identities

1 + ; " 1 1,o , 1 + N;(-dj) - N1,0 ,1  ' 1(-d 2 ) 
+ N' ,,

27
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with N1 1 1 1  ve obtain the identities

!U AP 14 lit U p -1

N + N 1' - (5)

N (--d + Nd N .(.)

IA 2 A U= N j I

2beorem 4.2. Let k - 3,-3 and p n plk) 2 -3 , and let So %A hen

given by (3) has unique minimal support in So

The proof of Theorem 4.2 is based on the following las= and its corollaries.

Lama 4.2. Let A and X be as in l ia 4.1. but with S, replaced b s Then

dim X - (0+1 - + + (J+2 -

Proof. Since k - 3P-3 and k-p - P , we conclude from (2.5) that S((k•ppp) is

spanned by the two cone splines COO C1  corresponding to the direction multiplicities

(iii-lii) and (p-l,,) * respectively. Thus, from the argument for Proposition 2,

x - if e span((- , 0))).0, tfie - 0)

with 6 a conv(jd1 , jdI+d3 , (J+l)d 1 ) Because Ci is homogeneous of degree 3Va-3 and

vanishes to exact order p+i - 2V-3 + i along 3td I , we have

C0 (x-(V,O)) - co()( Vo))(p' 1 , 2" 2 ) + d%(x-(V,0) ) ( 2 2 V- ) + o(x(2) 2 p 1)

C (x-(v,O)) c, (x.(VO))(I" 2 , 2 " 1 ) + o(x(2) 2 0- 1 )

for x e e and some co, c 9' 0 . The condition

f a Vi C _ (v,O)) - 0 on e

therefore implies that

E; a Ao(X(1) - 0
V 0  ) 1 for x e 8

(az od o + ac 1 )Cx(1) - - o
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These are min(j+, m) + &in(j+1,Ii-1) linearly independent conditions on the 2(j+1) -

vector (a Vi) of coefficients and therefore

din X 4( 0+1 - i)+ + (J+2 +

The reverse inequality follows since

N.(" - (v,O)) , v-O,...,j-iV, and N'.l - (O,v)) , VO,...,j+1-A

are independent over (2 and their restriction to (2 lies in X . Their linear

independence follows from the fact that, by (5), N and N' agree near the origin with1h p

Co and C1 , respectively. Ill

Corollary 1. Let ( and0 e as in the lama, but with j - P-1 , and let 9' and

0' be their image under the 'flip' x I--> (x(2),x(1)) . If f e So  has support in

{x(l), x(2) AI)}UQUU' , then f vanishes already on 9 ('Q.

Proof. much an in the proof of Lemma 4.2, ye conclude that, on QV'

f - a00 C0 + a0 1CI + E (aiC.i(.-(V,o)) + a,ici(.-(o,,')))
*( V( is

subject to the conditions that

E avO(X(1) - v)Ih 1  - 0 for x e 0 (6a)
v<Ia

(a,,do + a,,c,)(x(1) - V" - 0 for x e 6 (6b)

for some c1  0 , while, with a~i I- %i i i-0,1, also

Z a;.(x(2) - -
V ) - 0 for xe 8' (61a)

V.V + c )(x(2) _ V) 2 
- 0 for xe8'

I (a- I 0 V I fr x 01(61b)

0 vO
Note the reversal in the role of the second subscript, due to the fact that

Ci(x) - Cl.i(x(2),x(ll)

We conclude from (6a) that avO - 0 , all v , and from (6'a) that a' - 0 , all V * Zn

particular, a6, - 0- 0 . Therefore (6b) implies that also avl - 0 , all v and,

likewise, (6'b) implies that a' - 0 , all V l
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Corollary 2. if f S0 has its support in a+ and its suoport in (0,N42 .ies

between the rays (P-1)d + RA and (V-1)d2 + 3 A , then f - 0 on (0,412

*Proof. The given domain is contained in the union of the sequence

of sets

a :- (vv) + QW,V

with GUIV' as in Corollary 1, to which we can apply Corollary I in sequence, in order to

conclude that f must vanish on each OV  III
4V

Proof of worms 4.2. Assume that supp gC supp, N for some g e 80 • By Imma

4.2, g cMi on 0 to conv((3P-,0), (0,0), (2-1,M-1), (2UP-1,) . This implies that f :-

g - cu e S. has support in the domain described in Corollary 2 to Lea 4.2, hence must

be zero. Ill

we now show that the elements with unique minimal support form a basis for all locally

supported elements of So

WEop sitiom 4.2. For given convex a , a basis for S0 [Q :- {f e 0  supp f is

provided by the collection of all N (*-v), NM1(-v) , ve Z2, in 80] 

Proof. Assume without loss that b1 [0,3]1 and let f 6 S0[I] be given. Since N

N' agree near the origin with the respective cone splines C0 , C1 , the argument for

Proposition 2 leads to the conclusion that there is a unique linear combination

g :- Z 2  (agy-v + a;.s(-v)) (7)

which agrees with f on (0,m-20+2]2 . This implies that f-g has support only on

[0,N]2\0[0,p-2u+212 . Application of Corollary 2 to Loms 4.2 therefore proves that f-g

30
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has no support in (x(1) C R-2p+2) and, with this, a second application of that corollary

shows that f-g has no support in (f-2+4 -C x(1) M) 1 either. Therefore f - g

Let 0' be the convex hull of the union of the supports of all the N (-v) and

U'(-v) which appear in (7) with nonzero coefficients. Then 0' is a polygon. We claim

that 0' C Q . It is obvious from the construction of g that any lover left corner of

0' must lie in supp f , hence in 0 . But since g is uniquely determined, this

implies, using the mesh symmetries, that all six kinds of corners of 0' lie in 0 , hence

Finally, we consider the irregular and rich case k - 3U-1 , for which p(k) - 2p-2

Set

82 ,= 1p(k) - _2p-2
2h '3vj-1,A

There are three independent cone splines of degree k at a lower left corner, but, because

p~k) is so low, there is also an additional cone spline of degree k-1 in S2 * This means

that a search for a basis for S (0] would have to come up with four unique minimal
2

support elements per vertex. This, as it turns out, is not possible if we stick with the

definition of wminimal support" given earlier.

/

//

Figure 4.3
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Already the case k = 2 of continuous parabolic splines provides the necessary

illustrations: A suitable basis for 82 [] is provided by the translates of four functions

whose supports are drawn in Figure 4.3. These functions are obtainable as the Lagrange

functions of standard local parabolic interpolation (at the vertices and the edge midpoints

of each triangle). The first three have unique minimal support. But the fourth function's

support is made up of six triangles and could accomodate each of the other three's much

smaller support, hence it fails to be minimal.

In this case and others mentioned later, it is possible to recapture unique minimality

of support by referring to the support of the associated B(ernstein or -ezier)-net of the

pp functions instead. In any case, the support of the various box splines of degree 2 in

S2 is far from minimal since it contains ten triangles.

The next case, k - 5 , hence p(k) - 2, provides the additional unhappy surprise that,

in this case, S2 contains an element supported on just one hexagon (i.e., on six

triangles). This element occurs already in [Sl1. Because its support coincides with that

of K1, 1 , 1 , this element cannot be obtained from a parabolic one by convolution. The same

is true of the next two "minimal support" elements whose supports coincide with that of

M and N' respectively (see Figure 4.2). The fourth "minimal support' element is

derived from, and has the same support as, N2 , 2 , 2

The next case, k = 8, is easy since its four "minimal support" elements can be

obtained from those for k - 5 by convolution with 1 1

This pattern repeats: For odd U , the four "minimal support" elements can be obtained

from the preceding case by convolution with N, 1 ,1 " For even v , enough local degrees of

freedom have been accumulated to make possible elements in 92 of yet smaller support than

is had by the elements obtained from the preceding case by convolution with 1,1,1

3
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